Проблема извлечения и последующего накопления знаний в конечном счете сводится к знаниям о модели, которые формализуются путем оценивания ее характеристик. Последнее интерпретируется как обучение модели с использованием данных. Современное представление о машинном обучении предполагает, что его результатом являются «обученные» детерминированные модели, снабженные эмпирическими вероятностными оценками их достоверности.
В настоящей монографии развивается новое направление в машинном обучении — рандомизированное машинное обучение, которое направлено на генерацию ансамблей энтропийно «обученных» рандомизированных моделей. Если иметь в виду, что процедуры машинного обучения применяются к зада

Рандомизированное машинное обучение при ограниченных объемах данных: От эмпирической вероятности к э

Этот товар закончился

Нет оценок

Описание и характеристики

Проблема извлечения и последующего накопления знаний в конечном счете сводится к знаниям о модели, которые формализуются путем оценивания ее характеристик. Последнее интерпретируется как обучение модели с использованием данных. Современное представление о машинном обучении предполагает, что его результатом являются «обученные» детерминированные модели, снабженные эмпирическими вероятностными оценками их достоверности.
В настоящей монографии развивается новое направление в машинном обучении — рандомизированное машинное обучение, которое направлено на генерацию ансамблей энтропийно «обученных» рандомизированных моделей. Если иметь в виду, что процедуры машинного обучения применяются к задачам с достаточно высоким уровнем неопределенности (не вполне достоверные данные, неполнота знаний о моделируемом процессе, и др.), то переход к энтропийно-рандомизированной концепции машинного обучения может оказаться полезным и эффективным инструментом решения прикладных задач.
Книга может быть полезной для студентов, аспирантов и научных работников, интересующихся теоретическими аспектами машинного обучения и анализа данных, а также их приложениями в различных практических областях.
  • Тип обложки Твёрдый переплёт
  • Количество страниц 320
  • Вес, г 439
  • Размер 1.7x15.3x21.7
  • Издательство Ленанд
  • Возрастные ограничения 0+
  • Год издания
  • ID товара 2700920

Отзывы

Оставьте отзыв и получите бонусы

Оставьте первый отзыв и получите за него бонусы.

Это поможет другим покупателям сделать правильный выбор.

Книга «Рандомизированное машинное обучение при ограниченных объемах данных: От эмпирической вероятности к э» есть в наличии в интернет-магазине «Читай-город» по привлекательной цене. Если вы находитесь в Москве, Санкт-Петербурге, Нижнем Новгороде, Казани, Екатеринбурге, Ростове-на-Дону или любом другом регионе России, вы можете оформить заказ на книгу Юрий Попков «Рандомизированное машинное обучение при ограниченных объемах данных: От эмпирической вероятности к э» и выбрать удобный способ его получения: самовывоз, доставка курьером или отправка почтой. Чтобы покупать книги вам было ещё приятнее, мы регулярно проводим акции и конкурсы.