В 1962 г. геометры Людвиг Данцер и Бранко Грюнбаум предложили выяснить, насколько много точек может содержать такое множество точек в n-мерном пространстве, любые три точки которого образуют остроугольный треугольник. Несложно придумать такое множество из 2л — 1 точки. Авторы задачи думали, что лучшей конструкции не бывает. Гипотеза продержалась более двадцати лет, пока Пол Эрдёш и Золтан Фюреди с помощью весьма изящной комбинаторики её не опровергли. Оказалось, существует такое множество из [с"/2] точек, где с = 2/\/3.
Брошюра посвящена изложению конструкции Эрдёша—Фюреди, основанной на применении вероятностных методов в комбинаторике. Текст представляет собой обработку записи лекции