Данная книга поможет программистам на Python, инженерам и исследователям данных научиться применять фреймворк распределенных вычислений с открытым исходным кодом Ray и разворачивать вычислительные кластеры Ray. Ray может использоваться для структурирования и выполнения крупномасштабных программ машинного обучения. Распределенные вычисления отличаются своей сложностью, но с помощью Ray вы легко приступите к работе.
Прочитав книгу, вы научитесь:
- создавать свои первые распределенные приложения с помощью ядра фреймворка – Ray Core;
- оптимизировать гиперпараметры с помощью библиотеки Ray Tune;
- применять библиотеку Ray RLlib для обучения с подкреплением;
- управлять распределен
Прочитав книгу, вы научитесь:
- создавать свои первые распределенные приложения с помощью ядра фреймворка – Ray Core;
- оптимизировать гиперпараметры с помощью библиотеки Ray Tune;
- применять библиотеку Ray RLlib для обучения с подкреплением;
- управлять распределен
- -15%
Изучаем RAY
Описание и характеристики
Прочитав книгу, вы научитесь:
- создавать свои первые распределенные приложения с помощью ядра фреймворка – Ray Core;
- оптимизировать гиперпараметры с помощью библиотеки Ray Tune;
- применять библиотеку Ray RLlib для обучения с подкреплением;
- управлять распределенной тренировкой моделей с помощью библиотеки Ray Train;
- применять Ray для обработки данных с помощью библиотеки Ray Data;
- работать с кластерами Ray и подачей моделей в качестве служб с помощью библиотеки Ray Serve;
- создавать сквозные приложения машинного обучения с помощью инструментария Ray AIR.
- Тип обложки Твёрдый переплёт
- Количество страниц 290
- Вес, г 580
- Размер 2x17.3x24.3
- Издательство КТК Галактика
- Год издания 2023
- ISBN 978-601-08-3430-9
- Тираж 200
- ID товара 3004099